
Assessing the Impact of Linux
Networking on CPU Consumption

by Davide Miola

Contents

1. Introduction
1.1. Scope of this work and why it is important
1.2. Background

2. Design and implementation
2.1. Basic algorithm overview
2.2. Handling switching of the execution context
2.3. Event breakdown functionality

2.3.1. Full Functions Tracking
2.3.2. Network Stack Sampling

3. Results and validation
4. Conclusions

2

1. Introduction

3

1.1 Scope of this work and why it is important

It is common knowledge that
software networking is

expensive*, but just how
much time do our servers’

CPUs spend moving
network packets around?

WHAT

• Discover possible
optimizations

• Assess offloading
potential

• …

WHY

No ready-to-use dedicated
utility is available, so…

Let’s build one!

HOW

Netto
https://github.com/miolad/netto

4

*: but still increasingly
relevant due to virtual

networking within
hosts

https://github.com/miolad/netto

1.2 Background

eBPF (extended Berkeley Packet Filter) is a technology of the Linux kernel that allows
dynamic injection and execution of user code into the kernel

● Fast: Jitted code is run at
near native speed

● Safe: Verifier ensures
program correctness

● Portable: vCPU architecture
is host agnostic (mostly 1)

● Versatile: Applications
include tracing, networking
data plane implementation,
and more

1. https://lwn.net/Articles/779120/
5

https://lwn.net/Articles/779120/

1.2 Background

RX IRQ
“top half”

softirq
“bottom half”

SocketTX

6

2. Design and Implementation

7

2.1 Basic algorithm overview

• Attach eBPF tracing probes to in-kernel networking entry
points

• Measure on-CPU time as diff between entry and exit
timestamps

= network stack entry point

Fast and efficient operation enables
real time, continuous monitoring

8

sock_sendmsg
sock_recvmsg

NET_RX_SOFTIRQ
NET_TX_SOFTIRQ

2.1 Basic algorithm overview

CPU0 timeNET_RX_SOFTIRQ

tp_btf/softirq_entry tp_btf/softirq_exit 9

Typical operation:

t1 t2

𝛥t

2.2 Handling switching of the execution context

Task interruption

CPU0 timesock_sendmsg… …NET_RX_SOFTIRQ

1. Mark each kernel task with a flag identifying the currently running socket operation, if
any (BPF_MAP_TYPE_TASK_STORAGE is perfect for this)

2. At every tp_btf/softirq_entry impersonate the socket operation’s exit probe
associated to the interrupted task’s flag

3. Likewise for the tp_btf/softirq_exit tracepoint

2.2 Handling switching of the execution context
CPU0

time

CPU1

sock_sendmsg…

…

Task migration

11

1. Instrument the sched_switch tracepoint
2. At every task switch, impersonate the outgoing task’s exit probe and the incoming

task’s entry probe depending on their flag’s value
3. Note that softirqs can not be preempted!

2.3 Event breakdown functionality

Provide more in-depth
insights of networking tasks

OBJECTIVE

Breakdown of the NET_RX_SOFTIRQ’s contribution

Extend base approach to
sub-functions of net_rx_action
● Very complex eBPF code
● Very slow

Full Functions Tracking

Sample kernel-side stack trace
regularly on all CPUs

● Tricky to move many traces
to user-space

● Ultimately much faster and
more elegant

Network Stack Sampling

12

→ Bridging
→ Forwarding
→ Conntrack
→ NetFilter
→ Local Delivery
→ etc…

CPU0 time

2.3.1 Full Functions Tracking

NET_RX_SOFTIRQ
napi_poll

netif_receive_skb
ip_local_deliver

ip_forward

But…

complexity in the traced function hierarchy translates into complex eBPF code, and also
instrumenting per-packet functions is not a good idea in high speed networks

2.3.1 Full Functions Tracking

46% drop!

2.3.2 Network Stack Sampling
➔ BPF_MAP_TYPE_STACK_TRACE + hash map for counts

◆ ✅ in-kernel trace summarization
◆ ❌ requires two maps
◆ ❌ no efficient method to retrieve them in user-space (multiple syscalls per stackid!)

➔ emulate stack trace map with hash map
◆ ✅ in-kernel trace summarization
◆ ✅ can copy whole map to user-space with one batch lookup
◆ ❌ requires two stack dumps to get stackid in BPF

➔ BPF_MAP_TYPE_RINGBUF
◆ ✅ “idiomatic” way to stream data from BPF to the user-space
◆ ✅ only one stack dump per invocation
◆ ❌ no in-kernel trace summarization

➔ mmapable BPF_MAP_TYPE_ARRAY
◆ ✅ no syscalls to read traces in user-space
◆ ✅ only one stack dump per invocation
◆ ❌ no in-kernel trace summarization

w/ double buffering!

2.3.2 Network Stack Sampling

2.3.2 Network Stack Sampling

User-space CPU utilization for Network Stack Sampling with Ring Buffer and
Mmapable Array backends.

3. Results and Validation

18

3 Results and validation

iperf3 UDP receive Google’s “Online Boutique”
microservices demo 19

3 Results and validation

20

3 Results and validation

21

4. Conclusions

22

4 Conclusions

23

Current limitations

● Only measures in-kernel networking (i.e.
no QUIC, TLS, or custom user-space
data-planes)

● Ignores top-halves as well (wide range of
implementations and minimal CPU
consumption)

Future work

● Extend cost breakdown to more
sub-events and, possibly, more top level
entry points

● Explore an all-sampling measurement
stack to further reduce overhead on high
speed networks

Questions?

24

